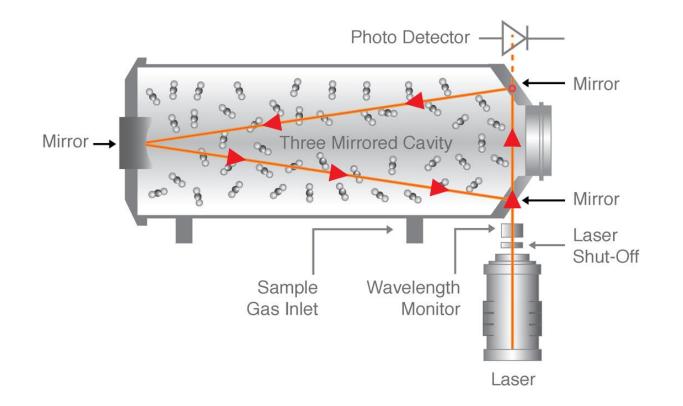


ΡΙСΛ R R O

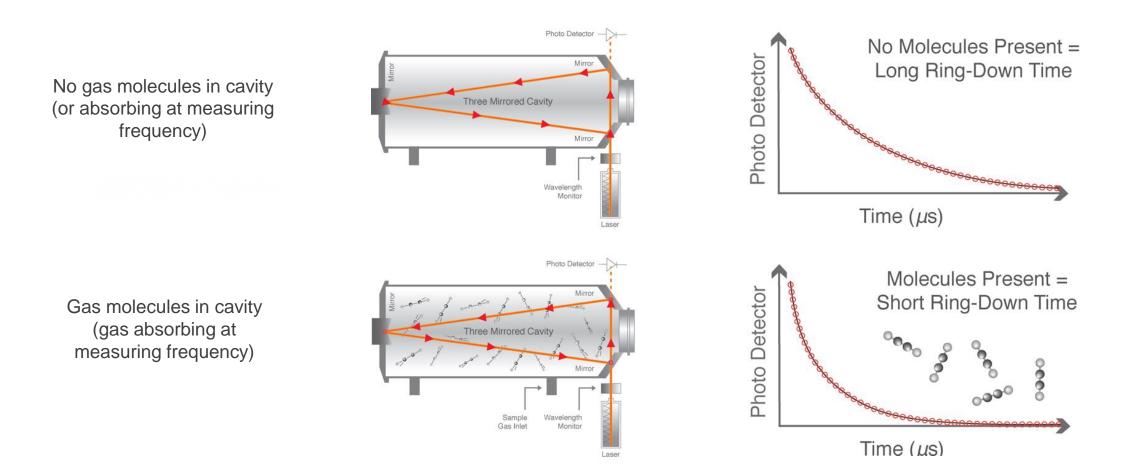
Providing Solutions to the World's Most Challenging Environmental Questions

May 2023

WHO ARE WE?


- Leading provider of solutions to measure greenhouse gas concentrations, trace gases and stable isotopes across many scientific applications, along with the energy and utilities markets.
- Over 45 patents owned by Picarro or exclusively licensed from Stanford University
- ISO 9001:2015 Certified Corporate Headquarters, including R & D, Engineering and Manufacturing/Operations in Santa Clara, California
- 300+ employees
- Thousands of Picarro instruments in 95 countries world-wide

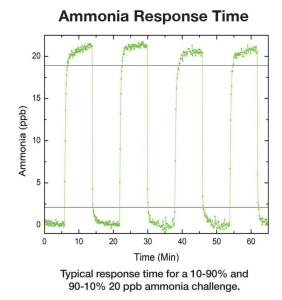
Cavity ring-down Spectroscopy (CRDS)


Time, Not Absorbance

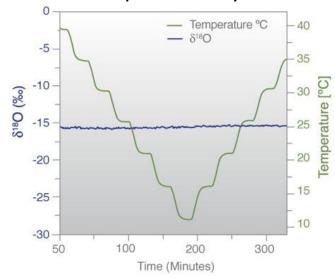
- CRDS utilizes the unique infrared absorption spectrum of gas-phase molecules to quantify the concentration of (and sometimes isotopes of) H₂O, CO₂, CH₄, N₂O, CH₂O, NH₃, etc.
- Measure decay rate, rather than absolute absorbance
- Small 3-mirrored cavity ~ 35 cc
- Long effective path-length (up to 20 km)
- Time-based measurement
- Laser is switched on and off, and scanned across wavelengths

Increasing Concentrations Faster Ring-Down

Absorbing species follow Beer-Lambert Law



Deployed Across the Globe, in any Situation



What sets Picarro apart?

- Speed: Fast response time
- Sensitivity: Extreme precision: ppb or better precision
- Simplicity: No need for constant adjustment to atmospheric changes
- Selectivity: Interference free: no influence from water or other components
- **Species:** Up to 5 species (water + additional molecules)
- Stability: Extremely low drift: stable for months in the field without calibration No environmental influences from temperature, pressure or vibrations

Temperature stability

Overview Picarro analyzers

GHG analysis

 $\begin{array}{l} G2301:CO_2, CH_4, H_2O\\ G2401:CO_2, CH_4, CO, H_2O\\ G2401-m:CO_2, CH_4, CO, H_2O (flight)\\ G5310:N_2O, CO\\ G2508:N_2O, CO_2, CH_4, (NH_3), H_2O\\ G2509:N_2O, CO_2, CH_4, NH_3, H_2O\\ \end{array}$

Suitable for concentration analysis in the atmosphere. Analyzers are optimized for atmospheric concentrations.

Trace gas analyses

SI2103: NH₃, Ammonia PI2114: H_2O_2 , Hydrogen Peroxide G2307: H_2CO , Formaldehyde SI2205: HF, Hydrogen Fluoride SI2108: HCl, Hydrogen Chloride SI2104: H_2S , Hydrogen sulfide G2910/G2920: C_2H_4O , Ethylene Oxide

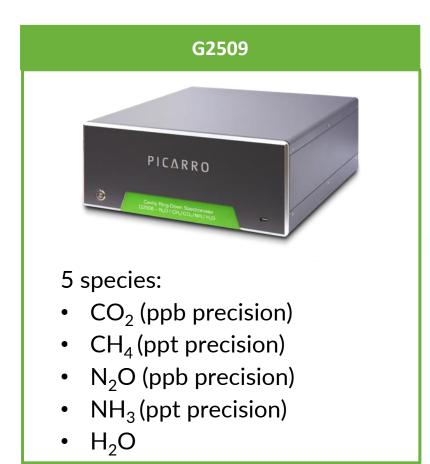
Suitable for trace gas detection with a specified lower detection limit, for industrial and atmospheric use.

Isotopic analyzers

 $\begin{array}{l} {\rm G2131\text{-}i:\delta^{13}C \ of \ CO_2} \\ {\rm G2201\text{-}i:\delta^{13}C \ of \ CO_2 \ \& \ CH_4} \\ {\rm G2210\text{-}i:\delta^{13}C \ of \ CH_4 \ \& \ C_2H_6} \end{array}$

L2130-i : δ^{18} O & δ D of H₂O L2140-i : δ^{18} O, δ^{17} O, δ D & δ^{17} O-excess

Suitable for field-based monitoring and laboratory application, can be used with different peripherals.


Picarro's ammonia analyzers

	Model	CO ₂	CH ₄	N ₂ O	H ₂ O	NH ₃
	G2103	(s)			(s)	Х
	G2508	Х	Х	X*	Х	(s)
NEW	G2509	Х	Х	X*	Х	Х

- X: primary measurement
- s: secondary measurement
- *: additional corrections for NH₃>2ppm

8

The Picarro G2509 analyzer

- Livestock farming, manure processing, and fertilizer studies
- Improved NH₃ performance:
 - Response time
 - Coating for sampling handling parts
 - Increased flow rate (ca. 1.3L/min instead of 240mL/min)
 - Accurate ammonia measurements up to 50 ppm
- Extended CH₄ range (up to 800ppm)
- Surrogate gas validation
- Proven as 'customized G2508' since 2018

Interview with Anders Feilberg

About Anders Feilberg

- Associate Professor at Aarhus University, Denmark
- Key opinion leader for livestock measurements
- Experience with Picarro: Working with Picarro analyzers since 2015

Key statements

- Negligible interference in barn environments (Kamp *et al.*, 2019)
- High sensitivity for ammonia measurements in the field
- Comparable ammonia sensitivity of G2103 and G2509

Full interview can be found on G2509 product page: https://www.picarro.com/products/g2509_gas_concentration_analyzer

Picarro G2201-*i* CH₄ and CO₂ isotope analyzers

The following measurements are available (also in one unique field deployable analyzer):

- Measure δ^{13} C in CO₂ < 0.1 ‰ precision (5 min average)
- Measure δ^{13} C in CH₄ < 0.8 ‰ precision (5 min average)
- Simultaneously measure CO₂ and CH₄ concentration

Excellent precision at a fraction of IRMS operating cost – less calibration, less maintenance, no consumables

Applications: soil chamber studies, enrichment studies, discrete gas analysis, δ^{13} C of solids (CM-CRDS), δ^{13} C of dissolved gases, δ^{13} C of DIC etc.

tion	System	Setun		
on isotope measurements of CO ₂ and CH ₄ are used to understand the sources and mechanisms g to soli gas flux. For example, isotopes of CO ₂ can determine the relative contributions of root and O ₂ production to total soli CO ₂ flux. Atternatively, in	Fallow Elsewise application note AN8003 for quick stating of your Pricarte G2201-j with the coMX multiplexei and cosAC eutomated soit flux chambers.			
here photosynthetic pathways have transitioned from r vice versa (Figure 1a) isotopes can be used to relative contributions of carbon from each pathway to				
ensive contrabutors for autoch from each pairwhy to praterio. Smithlink, methane stabile solppes are errentate biological versus geological sources of soil gure 1b) and can also be used to examine the so of methane production and oxidation. This note outlines the configuration and used the 201-i dual carbon (CO ₂ & CH ₄) isotope analyzer to between C3 and C4 respiration sources at a agricultural organisment in southern Swiden.	The Picarro G2201-i with A0702 recirculating pump has a nominal flow rate of 25 sccn and is optimized to provide recirculation-based measurements. Due to the low flow rate users must consider the total transat time and mixing time required for chamber measurements. Below in Table 1 the estimated minimum times required by tubing length to deliver the sample to the analyzer are shown.			
	Tubing Length	Volume	Transit Time	
	10 m	79 cm ³	3 min	
	20 m	158 cm ³	6 min	
	30 m	238 cm ³	9 min	
	Babeyum a 175mm (b) Increating pump. Because the required mm be sampling process. Eco normal floor rates of less designed for necicialism the configuration of the se	imum transit tim nent a secondary sense recommer than 1 SLPM (1 applications. Fig	as are quite long, pump to speed up ids a pump with 000 sccm) that is ure 2 demonstrates	

Bengt Sandgärde

CEO <u>Bengt.sandgarde@msnordic.se</u> +46 70 6046850

Sara Sandgärde Sales and marketing Sara.sandgarde@msnordic.se +46 70 9813334

PICARRO

Martin Sandgärde Sales <u>Martin.sandgarde@msnordic.se</u> +46 72 7348485

ΡΙCΔRRO

